ola 890 wyśw. 10-10-2020 19:52

Rzut piłką

Statek wycieczkowy przepłynął z predkoscią 28,8km/h pod mostem. Gdy statek mijał przyczółek mostu, mając postac betonowej sciany, równoległej do toru ruchu statku, pasażer rzucił piłkę poziomo w kierunku tej sciany. rzut był wykonany w ten sposó, że piłka wpadła z powrotem w rece pasażera. Przyjmij, że zderzenie piłki ze ścianą było doskonale spreżyste. Pomiń wpływ działania siły ciężkosci powodującej obniżenie się toru lotu piłki

a) Pod jakim kątem do toru ruchu statku pasażer rzucił piłkę, skoro wpadła mu z powrotem w ręce? Zagadnienie to rozważ w układzie odniesienia związanym ze statkiem.

b) Oblicz jaką drogę przebyła piłka względem pokładu statku, jeżeli odległość od ściany wynosiła 2m.

c) Oblicz jak długo trwał ruch piłki skoro rzucono ją z prędkością 16 m/s.

d) Jaką drogę pokonała piłka z punktu widzenia wędkarza stojącego na brzegu rzeki.


Potrzebuję pomocy z powyższym zadaniem. Wiem że w podpunkcie a) w odpowiedzi jest chyba że nie ma kąta i ma to związek z siłą bezwładności ale nie wiem jak to zastosować. Co do pozostałych podpunktów, z powodu problemu jaki mam z pierwszym podpunktem, nie wiem jakim ruchem porusza się piłka i jak będzie widział ją wędkarz.
fizyka kinematyka Dodaj post do ulubionych Poproś o pomoc
s.gugula 04-11-2020 16:31

a) Zapewne w odpowiedziach napisane jest, że takiego kąta nie ma, bo jeśli zwiążemy układ z samym statkiem, to niejako cały układ się porusza, a statek spoczywa w tym układzie - nie ma więc żadnego toru ruchu. Jeśli możesz to przytocz odpowiedź, o której wspomniałaś i możemy ją przeanalizować.

Jeśli natomiast rozważymy to wszystko w układzie niezwiązanym ze statkiem (czyli np. z tym wędkarzem w podpunkcie d), to torem ruchu będzie linia prosta ułożona pod pewnym kątem do toru ruchu statku, a po odbiciu od ściany druga jej część odbita symetrycznie:


b) Względem samego statku jest to po prostu 2*2 m = 4 m

c) Jeśli jest to prędkość względem statku (nie jest to sprecyzowane, ale zakładam, że o to chodzi), to będzie to po prostu: t = s/v = 0,25 s.

d) Tu będzie to długość toru zawartego na rysunku powyżej, obliczenia już pozostawiam Tobie ;)