* Podając numer telefonu i klikając na przycisk "Proszę o kontakt", akceptujesz regulamin platformy i wyrażasz zgodę na przetwarzanie swoich danych osobowych,
w szczególności numeru telefonu, przez Szkoła Maturzystów Łukasz Jarosiński z siedzibą w Olkuszu, ul. Żeromskiego 2/20, NIP 6372144158
w celu przedstawiania oferty przez telefon. Twoje dane będą przetwarzane na zasadach określonych w polityce prywatności.
Administratorem danych osobowych jest Łukasz Jarosiński prowadzący działalność gospodarczą pod firmą Szkoła Maturzystów Łukasz Jarosiński
z siedzibą w Olkuszu, ul. Żeromskiego 2/20, NIP: 6372144158. Zapoznaj się z informacjami o przetwarzaniu danych tutaj.
1.
No dobrze załóżmy, że masz 3^(t1 + t2) = (-3)^2, to po prostu przekształcasz to do postaci: 3^(t1 + t2) = (-3)^2 = 3^2, czyli: 3^(t1 + t2) = 3^2, czyli to samo.
Nie ma sensu szukać dziury w całym, po prostu jeśli masz x^2, to możesz jeśli ci łatwiej zapisać jako (-x)^2, to już zależy od tego co ci łatwiej zrobić, tutaj stosowanie -3 mija się z celem, więc stosujesz -(-3) = 3.
2.
Tak, bardzo dobrze trzeba sobie optymalizować robotę, max punktów dostaniesz ;)